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1. I n t r o d u c t i o n  and  n o t a t i o n  

In Problem 9 of [9], Nyikos asks if there is a ZFC example of a separable, 

hereditarily normal, locally compact space of cardinatity ~1. He notes there that  

for a negative answer, it suffices to produce a model of set theory in which there 

are neither Q-sets nor locally compact,  locally countable, hereditarily normal 

S-spaces. 

We provide such a model in this paper. In fact, in our model 2 s° < 2 sl (so in 

particular there are no Q-sets) and there are no locally compact, first countable 

S-spaces at all (hence no locally compact,  locally countable, hereditarily normal 

S-spaces). 

In fact, we obtain something even more general. Recall that  an S-space is 

a regular, hereditarily separable space which is not hereditarily LindelSf. By 

switching the "separable" and "Lindel5f" we get the definition of an L-space. 

A simultaneous generalization of hereditarily separable and hereditarily LindelSf 

spaces is the class of spaces of countable spread-- those spaces in which every 

discrete subspace is countable. One of the basic facts in this little corner of set- 

theoretic topology is that  if a regular space of countable spread is not hereditarily 

separable, it contains an L-space, and if it is not hereditarily LindelSf it contains 

an S-space [10]. 

In our model, every locally compact 1st countable space of countable spread is 

hereditarily Lindelof; consequently, there are no S-spaces in locally compact 1st 

countable spaces of countable spread. This result, reminiscent of one half of a 

celebrated 1978 result of Szentmikl6ssy [12], will be discussed further at the end 

of the paper  in connection with a fifty-year-old problem of M. Kat~tov [7]. 1 

These concepts and results have elegant translations in terms of Boolean alge- 

bras via Stone duality. The Stone space S(A) of a Boolean algebra A is heredi- 

tarily Lindel5f iff every ideal of A is countably generated, and first countable 

iff every maximal ideal is countably generated. Let us recall that  a set D is a 

minimal set of generators for an ideal if it generates the ideal, but no member of 

D is a member of the ideal generated by the remaining members. Not every ideal 

will have a minimal set of generators, but it is true that  S(A) is of countable 

spread if and only if whenever an ideal has a minimal set of generators, then that  

set is countable. 

Hence we now know that  2 s° < 2 ~1 is consistent with the following statement: 

if a Boolean algebra A has the property that  every minimal set of generators for 

1 Larson and Todorcevic have solved Kat~tov's problem in the time since the 
research in this paper was done. See [8] for the proof. 
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an ideal is countable,  and every max imal  ideal of A is countably  generated,  then  

every ideal of A is countably  generated.  On the other  hand, this s t a t ement  has 

long been known to be incompat ib le  with CH. 

Note tha t  there are restrictions on such models.  In [6] it is shown tha t  CH 

implies the existence of a locally compac t  first countable  S-space, and in Chap te r  

2 of [13] this is shown to follow from the weaker axiom b = R1. Thus  the fact 

tha t  our model  satisfies b = 1~2 is no accident of the proof  - someth ing  along 

these lines is required. 

As far as background goes, we will assume a reasonable familiari ty with topo-  

logical notions such as filters of closed sets and free sequences. We also use a lot 

of set theory  - -  we will assume tha t  the reader is used to working with proper  

notions of forcing. 

Our  main  tool is the use of total ly  proper  notions of forcing tha t  satisfy the 

R2-p.i.c. (properness i somorphism condition).  We will take a momen t  to recall 

the needed definitions. 

Definition 1.1: 

(1) Let P be a notion of forcing, and N a countable  e lementary  submodel  of 

H(,~) for some large regular ~ with P E N.  An (N, P)-generic sequence 
is a decreasing sequence of conditions {p~: n E aJ} C N N P such tha t  for 

every dense open D C_ P in N,  there is an n with Pn E D. 

(2) A notion of forcing P is said to be total ly  proper  if for every N as above 

and p E N a P ,  there is an (N, P)-gener ic  sequence {p~: n E a~} with P0 = P 

tha t  has a lower bound.  

We should ment ion tha t  total ly  proper  forcings are also somet imes  called N N R  

proper  in the l i terature (NNR standing for "no new reals") - -  see [11], for 

example.  

The  following claim summarizes  the propert ies  of total ly  proper  notions of 

forcing tha t  we will need. The  proofs are not difficult, and they are explicitly 

worked out  in [3] and [4]. 

CLAIM 1.2: Let P be a totally proper notion of  forcing. 

(1) P adds no new reals; in fact, forcing with P adds no new countable 

sequences of  elements from the ground model. 

(2) I f  G G P is generic, then G is countably closed. In fact, every countable 

subset of  G has a lower bound in G. 

The  following definition is from Chapte r  VI I I  of [11]. 
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Definition 1.1: P satisfies the R2-p.i.c. provided the following holds (for A a large 

enough regular cardinal): If 

(1) i < j < R 2 ,  

(2) Ni and Nj are countable elementary submodels of H(A), 

(3) i E Ni, j E Ni, 
(4) N nS2 c_j, 
(5) N i A i =  N j N j ,  

(6) h is an isomorphism from Ni onto Nj, 

(7) h(i) = j, 

(8) h is the identity map on Ni M Nj, 

(9) P c N nNj, 

(10) p C N i N P ,  

then (letting G be the P-name for the generic set) there is a q E P such that: 

(11) q IF "(Vr E Ni M P)[r e d ¢=:v h(r) e G]", 

(12) q "p c O', 
(13) q is (N~, P)-generic. 

Notice that if Ni and Nj are as in the above definition, then Ni and Nj contain 

the same hereditarily countable sets. This follows because h is an isomorphism. 

In particular, Ni M wl and Nj N wl are the same ordinal. We also note that in 

both of the previous two definitions, it does not matter  if we require that the 

models under consideration contain a fixed parameter x c H(A). Also note that  

~2 is an element of any relevant model Ni - -  in the more general case dealing 

with the n-p.i.c, for arbitrary ~ one must require that ~ E Ni N Nj. 

The properties of R2-p.i.c. forcings that we utilize will be spelled out in detail 

in the last section of the paper when we construct our model. What we use is 

that forcing with an ~2-p.i.c. notion of forcing over a model of CH preserves CH, 

and that  in iterations of length _< w2 where each iterand satisfies the l'~2-p.i.c., 

the limit forcing satisfies the (weaker) N2 chain condition. 

2. Handling P-ideals 

Definition 2.1: A P-ideal in [~21] ~° (the set of all countable subsets of 021) is a 
set Z c_ [wl] so such that 

• if A and B are in Z, then so is A U B, 

• i f A E Z a n d B C _ A ,  t h e n B E Z ,  

• i f A E Z a n d B = * A ,  t h e n B E Z ,  
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• if An • Z for each n • w, then there is an A • 2- such tha t  An C* A for 

each n. 

In the preceding, we use the familiar convention tha t  A C_* B means  A \ B is 

finite, and A =* B means  A C* B and B C_* A. 

Definition 1.1: Let /7 be a P-ideal  in [wl] a° genera ted by a set of size R1. A 

generat ing sequence for 2- is a sequence {Am: a < ~1} such tha t  

• A,~C_a, 

• if (~ < fl then Am C* AZ, 

• if A E 77, then there is an o~ with A C_ As.  

Clearly every such 2- has a generat ing sequence. 

Our  goal in this section is (assuming CH holds) to define a notion of forcing 

(which we call p(Ir)) with the proper ty  tha t  for every P-ideal  2- C_ [wl] so in the 

ground model  there is an uncountable  set A in the extension satisfying [A] s° C_ 2- 

or [A] ~° N/7 = 0. The  par t ia l  order we use is a modif icat ion of one of the posets  

from [2], itself a modificat ion of the notion of forcing used in [1]. 

Assume CH, and let T[ = (I{: { < n) be a sequence of P-ideals in [CO1] R°. Let  

{A~: c~ < c o l }  be a generat ing sequence for 2-{ (such a sequence exists because 

CH holds). The  notion of forcing we define depends on our choice of generat ing 

sequences, but  we abuse nota t ion  and call the notion of forcing P(II). 

Definition 2.3: A promise  is a function f such tha t  

• dora f is an uncountable  subset  of tX)l, 

• f ( a )  is a finite subset  of a .  

Dethfition 2.4: A condit ion p • p(lr) is a pair  (ap, Op) such tha t  

(1) ap is a function, 

(2) dora ap is a countable  subset  of n x wl, 

(3) r a n a p  C_ 2, 

(4) for ~ < a', [p]~ := {~" < wl: ap(G~')  = 1} is in 2-~ (so [p]~ = 0 for all bu t  

countably  many  ~), 

(5) Op is a countable  collection of pairs (v, f ) ,  where .v C_ t~ is finite and f is a 

promise.  

A condit ion q extends p if 

(6) aq D ap, ~q D Op, 

(7) for ( v , / )  • Op, 

Y(v,  f ,  q,p) = {a  • dora f :  (V( • v)([q]~ \[p]~ C A~ \ f ( a ) ) }  
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is uncountable,  and 

( v , /  I r ( v , f , q , p ) )  E q~q. 

The intent of p(1T) is to a t t empt  to adjoin for each ~ < n an uncountable 

set A~ with [A~] s° contained in 7:~. A condition gives us an approximat ion to 

A~ for countably  many ~, as well as some constraints on future growth of these 

approximations.  A pair (v, f )  E ffp puts limits on how our approximat ion to A~ 

can grow for the finitely many ~ E v. It  may be tha t  the forcing fails to produce 

an uncountable A~ for some (, but  we show tha t  we can do so in every si tuat ion 

where we need it. 

Definition 2.5: Let p be a condition in P(]I), let D be a dense open subset of 

P ( ] ) ,  and let v be a finite subset of n. An ordinal a is bad for (v, p, D) if there 

is an F~ E [a] <s° such tha t  there is no q < p in D with 

[q]~ \ [p]~ C_ A~ \ F~ 

for all ~ E v. Let Bad(v ,p ,D)  be the set of a < wt tha t  are bad for (v ,p ,D) .  

PROPOSITION 2.6: Bad(v, p, D) is countable. 

Proof: Suppose not. Let f be the function with domain Bad(v,p ,  D) tha t  sends 

a to F~, so f is a promise. Let r be the condition in p(lr) with a~ = ap, and 

• ,. = Op U { (v, f )  }. Clearly r extends p. Now let q < r be in D. By definition, 

there are uncountably  many  a E dora( f )  such that  if ~ E v then [q]~ \ [ r ]~ is 

a subset of A~ \ f (a ) .  This is a contradiction, as any a E dom f is bad for 

(v, p, D),  yet q E D and 

[q]~ \[p]~ C_ A~ ". f ( a )  

for all ~ E v. | 

THEOREM 1: P ( I )  satisfies the R2-p.i.c. 

Proof: Let i, j ,  Ni, Nj, h, and p be as in Definition 1.3. For r E Ni M P(][), we 

define 

,-  u h(r): = (at u h(ar), Cr u 

LEMMA 2.7: Assume that r E Ni N P(~). 

(1) ,-u h(r) E 
(2) r U h(r) extends both r and h(r). 

(3) f f  s E Ni n p(]l) and r <_ s, then r U h(r) ~_ s U h(s). 

Proof: Left to reader. I 
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Now let 5 = Ni N coa = Nj Cl wl, and let {D . :  n E co} enmnera te  the dense 

open subsets of P(II) tha t  are members  of Ni. Our  goal is to build a decreasing 

sequence of conditions {p~: n E co } in Ni M P (~) such tha t  P0 = P, Pn+ 1 E ~ i  f'l D n , 

and such tha t  the sequence {p,,~ tO h (p . ) :  n E w} has a lower bound q. The  next  

l emma  shows tha t  this will be sufficient. 

LEMMA 2.8: Let {p,~: n E co} be an (Ni, P(g))-generic sequence. 

(1) {h(p,~): n E aJ} is an (Nj, P(II))-generic sequence. 

(2) I f  {p,~ U h (p , ) :  n E co} has a lower bound q, then q satisfies conditions 11 

and 13 of Definition 1.3. 

Proof." The first clause follows immedia te ly  fl'om the fact tha t  h is an isomor- 

phism mapp ing  Ni onto Nj. For the second clause, note 

q IF- '"r E Ni (q G" . ~ a  r E Ni and 3n(p,~ < r).  

This  is because for each t" E Ni ~ P(I[), the set of conditions tha t  extend 7" or tha t  

are incompat ib le  with r is a dense open subset  of P(II) tha t  is in Ni, and hence 

for some n either p~ extends r or p~ incompat ib le  with r. Similarly, we have 

q ,~ -,. • Nj n d "  ¢ = ,  r e X~ and 3,,(h(p,,)  <_ .,'). 

Now clause 11 of Definition 1.3 follows easily. Clause 13 holds because the p, , 's  

are an (N i, P(I ) ) -gener ie  sequence. | 

Recall t ha t  5 = Ni rico1 = Nj Clcob and let {%:  n E a;} enumera te  Ni N n. We 

construct  by induction on n E a; objects  Pn, F,~, q,~ and 'u,. such tha t  

(i) P o = p ,  F o : 0 ,  u 0 = 0 ,  
(ii) q. = p~ U h (p . ) ,  

(iii) p~+ L E Ni N D,~, 

(iv) F.  is a finite subset  of 5, 

(v) u .  is a finite subset  of Ni M h:, 

(vi) p . + l  <_ p . ,  

(vii) F,~+I D Fn, 

(viii) u . + t  __D u~, 

(ix) {%,,: m < n} C_ u , ,  

(x) for 7 E un+l U h.(u,+,) ,  [q,,+,], "-[q,,]? _C A~ "- F,~+I, 

(xi) if (v, f )  E (l)qk for some k, then there is a stage n _> k for which 

(2.1) t' C '/tn+ 1 O h ( l tn+ l )  
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and 

(2.2) {aeY(v,f,q~,qk):(V(ev)(m~\Fn+lC_d~\f(a))} 
is uncountable. 

We assume that  we have fixed a bookkeeping system so that  at each stage of the 

induction we are handed a pair (v, f )  from some earlier @qk for which we must 

ensure (xi), and such that  every such (v, f )  appearing along the way is treated 

in this manner. 

There is nothing to be done at stage 0, so assume we have carried out the 

induction through stage n. At stage n +  1, we will be handed Pn, Fn, qn, and u~, 

and our bookkeeping hands us (v, f )  E Oqk for some k _< n. 

To start, we choose Un+l D u~ U {%} satisfying (v), but large enough so that  

V CUn+ 1 U h(uu+l). This means that  (v), (viii), and (ix) hold. 

CLAIM 2.9: I[ f is a promise, B C d o m f  uncountable, v C_ ~ l~nite, and/3 < aJ1, 

then there is a ~nite F C_/3 such that 

{a E B: (V~ C v)(A~ \ P C_ A~ \ f ( a ) ) }  

is uncountable. 

Proof: Straightforward, by induction on Iv]. I 

(Although the preceding claim has a trivial proof, it does not generalize to the 

context of the next section and in some sense this fact is the reason why the next 

section is so complicated.) 

Now apply the preceding claim to v, f ,  Y(v ,  f ,  qn, qk), u~+l U h(un+l),  and (~ 

to get a finite/~ _C 5 such that  

{e~ e Y(v ,  f ,  qn, qk): (V~ e U,+l U h(Un+l))(A~5 \ [? C_ A~ \ f(c~))} 

is uncountable. In particular, our choice of Un+l implies 

{C~ e Y(v ,  f ,  qn, qk): (V( G v)(d~ \ F C_ d~ \ f ( a ) ) }  

is uncountable. Now let Fn+t = Fn U/~. Clearly we have satisfied (iv) and (vii). 

Next, we choose/3 < col such that  

N~ ~/3 ¢ Bad(p~, Dn). 

For each 3, E Un+l U h(Un+l) there is a finite G~ c /3 such that  A~ \ G.y C_ 
A~ "- F~+I, so there is a finite G C_/3 such that  

V"/ e ~tn+l U h(u,~+,)[A~ \ G C_ A~ \ Fn+l ]. 
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Note that both 3 and G are in Ni Cl Nj, and hence are fixed by h. By (2), we 

can find p~+~ E N~ such that p,~+~ <_ p,., p,~+~ E D,~, and 

AT/ ~ (V'~ • .,,,,+,)([p,~+,]~ " l ~ , &  C_ A~ \ C). 

Applying h, we see that, 

Nj ~ (V7 • h(un+l))([h(pT~+l)]~ \[h(pn)]7 C_ A~ \ G). 

Thus 

(V'7 e 'Un+t U h(un+,))([qn+,]-~ \[qn]'7 C A~ \ G C_ A~ \ Fn+I) .  

Our choice ofpn+l (and q~+l) satisfies (ii), (iii), (vi), and (x). Since F C_ Fn+b 

we have that (xi) is satisfied for this particular (v, f ) .  

Now we need to verify that the sequence {q,: n E co} has a lower bound q. To 

start, we define 

(2.3) aq= U aq, and [q]~= U[qn]~" 
new new 

CLAIM 2 .10:  

(1) aq: u n 2 

(2) I[ ~ E Ni A t~, then [q]~ = U{[Pn]~: n e w}. If  ~ E Nj Cite, then [q]( = 

U{[h(p~)]~: n E co}. 

(3) [q]~ E Z~ for ~ < ~. 

Proof of Claim: Part 1 of the claim follows because the sequence {pn: n E co} 

(resp. {h(pn): n E co}) meets every dense set in P(II) that is a member of Ni 

(resp. Nj). Part 2 follows as in the proof of Lemma 2.7. For the last part, if 

~ (N~ U Nj) n n there is nothing to check, so assume ~ E (Ni U Nj) C) n, and fix 

n such that ( E {'~n, h(%~)}. Our construction guarantees that [q]~ C_ [q,~]~ U A~, 

and this latter set is in Z~. | 

CLAIM 2.11: / f k  E w and (v,f) E g2q~, then 

tO(v, f, k): = {a E domf :  (V~ E v)([q]~ \[qk]~ C_ A~ "-f(c~))} 

is uncountable. 

Proof." Let n > k be such that our bookkeeping handed us the promise (v, f )  at 

stage n + 1 of the construction. The actions we took at stage n + 1 ensure that 

= Y v ~' ,v)(A~ "-. Fn+I C_ A ~  \ f(c~))} A: {a E ( , J,  an, qk): (V~ E 
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is uncountable. We claim that A C K(v,  f ,  k); to see this fix a E A, and let ~ E v 

be arbitrary. We must verify that [q]~ \[qk]~ is a subset of A~ \ f ( a ) .  

[q]~ "[qk]( =([q](\[qn]~) U ([qn]~ \[qk]() 

C_( U [q"~]~ \[qn]~) 0 d~ \ f (a )  
m ~ n  

C_A~ ". F~+I U A~ \ f (a )  

c_A  \ 

Notice that in obtaining the second line, we used that a E Y(v, f ,  q.,  qk), and to 

obtain the third line we used requirement (x) of our construction and the fact 

that v C_ Un+ 1 U h(u,~+l). | 

Now we define 

G = U %° u U {(v,/r (v,S) e %,} 
new n e w  

and q -- (Uq, Xq, 42q) is a lower bound for the sequence {q~: n • w} as desired. 
| 

Notice that in our proof, the only relevant properties of h were that it is 

an isomorphism from Ni onto Nj that is the identity on Ni M Nj - -  the other 

requirements from Definition 1.3 were not used. In particular, our proof goes 

through in the case that h is actually the identity map (so N~ -- Nj). Thus we 

obtain the following. 

THEOREM 2: P(]I) is totally proper. 

We are still not through, however, as we have not yet verified that P(]I) lives 

up to its billing. 

Definition 2.12: Let ] be a promise and v C n finite. For ~ C v, we define a set 

Ban~(v, f )  by fl C Bane(v, f )  if and only if 

{a • dora f :  fi C A~ \ f ( a )}  is countable. 

If ~ ~ v then let Ban,(v, f )  = 0. 

PROPOSITION 2.13: If  ~ < n, and there is no uncountable A C_ co I with 

[A] ~° M Z~ = 0, then Ban~(v, f )  is countable. 

Proof We can assume that ~ E v as otherwise there is nothing to prove. By 

way of contradiction, suppose that Ban~(v, f )  is uncountable. Our assumption 
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on Z¢ means that there is an infinite B _C B a , k ( v , f  ) with B E Z~. For each 

c~ C dom S, there is a finite set F~ for which B \ F~ C A~ \ S(a). Thus there is 

a single finite F for which 

{oz C d o m f :  B \ F (5 A~ \ / ( c~)}  

is uncountable. Therefore any member of B \ F  is not in Bane(v, f ) ,  a 

contradiction. I 

PROPOSITION 2.14: I f  ~ < t~ and there is no uncountable A C_ 021 with 

[A] s° N Z~ = 0, then for each ~/ < wl,  the set o f  conditions p for which ~]~ \ ? is 

non-empty  is dense in P([ ) .  

Proof'. Let { and ? be as in the assumption, and let p C P(II) be arbitrary. By 

the previous proposition, 

U{B2n (v ,  f ) :  (v, f )  E a2p} 

is countable (as @p is countable), hence there is an a > "7 not in Ban~(v, f )  for 
any (v, f )  E @p. It. is straightforward to see that there is a q _< p wi th a E [q]¢. 
| 

Conclusion 1: Assume CH, and let lI = (h :  ~ < ~) be a list of P-ideals in [Wl] ~o. 

Then there is a totally proper notion of forcing P(ll), satisfying the R2-p.i.c., so 

that in the generic extension, for each ~ < h: there is an uncountable A~ C_ Wl for 

which either [A~] ~° C Z~ or l ad  ~¢° N Z~ = 0. 

Proof'. We have all the ingredients of the proof already. By Theorems 1 and 2, 

we know p(lI) is totally proper and satisfies the R2-p.i.c. Fix ~ < ~, assume that 

G C_ P(ll) is generic over V, and work for a moment in V[G]. 

If in I T there is an uncountable A< with [A~] ~o N 27~ = 0, then A~ still has 

this property in V[G]. (Note that since P(II) is totally proper, no new countable 

subsets of Wl are added, so 2:~ is unchanged by passing to V[G].) If no such set 

exists in V, then the set 

= U 
pEG 

is uncountable by the previous proposition, and [A~] ~° C_ 27~ by definition of our 

forcing notion. | 
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3. H a n d l i n g  r e l e v a n t  s pace s  

Our goal in this section is to build, assuming that  CH holds, a totally proper 

notion of forcing having the R2-p.i.c. that  destroys all first countable, countably 

compact,  non-compact S-spaces in the ground model. In fact, we do a little bet ter  

than this - -  if X is a first countable, countably compact,  non-compact regular 

space with no uncountable free sequences, then after we force with our poset, X 

acquires an uncountable free sequence. The partial order we use is a modification 

of that  used in [4], although things do not work as smoothly as they did in the 

last section. 

Let us call a space X r e l e v a n t  if X is first countable, countably compact,  

non-compact, regular, IXI = ~1, and X has no uncountable free sequences. For 

each relevant X,  we fix a maximal filter of closed sets 7-tx that  is not fixed. These 

filters lie at the heart of the work that  follows. 

Definition 3.1: If ?-/ if a filter of closed subsets of X,  we say that  Y C_ X is 

7-/-large if Y n A ~ 0 for every A C 7-/. We say that  Y C_ X d i agona l i ze s  7-/if Y 

is 7-/-large and Y \ A is countable for every set A E ~/. 

Notice that  if 7-t is countably complete and ~ / i s  generated by a set of size at 

most ~1, then every "//-large set Y has a subset Z that  diagonalizes ?-/. If  in 

addition 7-/ is not fixed, then every uncountable subset of Z will diagonalize 7-/ 

as well. 

PROPOSITION 3.2: Suppose ~t is a countably complete filter of closed subsets 

of  the space X ,  and suppose Z C_ X is ?-l-large. I f  the closure of  any countable 

subset of  Z is disjoint to a set in 7-l, then there is an uncountable F C_ Z that 

forms a free sequence in X .  

Proof." We construct F by in induction of length wl. At a stage c~, we will be 

choosing xm E Z as well as a set Am C ~ / in  such a way that  

• xm E N~<m A~, and 

• Am N cl{x~:/3 <_ a}  = O. 
At stage a,  we can find a suitable xm because the filter 7-/is countably complete 

and Z meets every set in ?-/. A suitable Am exists because of our other hypothesis 

on the set Z. Thus the induction carries on through wl stages, and it is routine 

to verify that  the set constructed is actually a free sequence in X. | 

Note that  in the preceding proposition we do not assume that  "//is a maximal 

filter. Also note that  as a corollary, we see that  7-/is generated by separable sets 

if X has no uncountable free sequences. 
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COROLLARY 3.3: I f  CH holds and X is a relevant space, then the filter 7ix  is 

generated by a family of size lql. 

Proof: Since IXI = R1, we know X has at most ~ o  separable subsets. By CH, 

we know that ~ o  = t~l. Since X has no uncountable free sequences, we know 

?-/x is generated by separable sets. | 

COROLLARY 3.4: I f  CH holds and X is a relevant space, then there is a set 

~ c_ X of size 1~1 that diagonalizes 7ix .  

Proof: We know that 7/x is generated by ~1 sets. Since ?-/x is countably 

complete, we can fix a decreasing family {Am: a < wl} C_ ? ix  that generates 

?-/x. To build ~)c, we simply choose a for each a a point x~ E As in such a way 

that x~ ~ xz for/3 < c~. Since the set {An: c~ < col} generates 7-/x, the family 

}~ = {x~: a < wl} diagonalizes ?-/x. | 

Since we are assuming that CH holds, let us choose for each relevant X a 

subspace ~ of size N1 that diagonalizes 7ix. By passing to a subset if necessary, 

we may assume that Yx is right-separated in type Wl. 

Since ?-/x is a maximal filter of closed sets, this means that ]Ix is a sub- 

Ostaszewski subspace of X, i.e., every closed subset of ~ )  is either countable or 

co-countable. This tells us immediately that every uncountable subset of Yx is 

7{x-large, and the filter 7ix is reconstructible from ~% as the set of all closed 

subsets of X that meet Yx uncountably often. 

We assume that each }'~ has Wl as an underlying set, and that this corre- 

spondence is set up so that initial segments are open. Thus given a collection of 

relevant spaces, a countable ordinal a is viewed as a point in each of the spaces. 

We also fix a function B so that for each relevant space X and ordinal a < a;1, 

{B(X,  c~, n): n ~ w} is a decreasing neighborhood base for a as a point in X. We 

will need one more definition before defining our notion of forcing. 

Definition 3.5: A promise f is a function whose domain is an uncountable subset 

of a;1 and whose range is a subset of w. 

Until said otherwise, 2C = {X~: ( < n} is a collection of relevant spaces, and CH 

holds. To save a bit, on notation, let us declare that 7-/~ = ?-/x¢, and ~ = Yx¢- 

Definition 3.6: A condition p ~ P(X') is a pair (ap, d2p) such that 

(1) ap is a func t ion ,  

(2) domap is a countable subset of {((,x):  ~ < t~ and x C X~}, 

(3) ranap c_ 2, 
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(4) for each ~ < ~, [p]~: = {x E X~: ap(~,x) = 1} satisfies clx~[p]~ ~ 7Q, 

(5) (I)p is a countable set of pairs (v, f )  where v C_ t~ is finite and f is a promise. 

A condition q extends p if 

(6) aq D_ ap, ~2q D_ (~p, 
(7) for (v, f )  E (I)p, 

Y(v, f ,  q,p): = ( a  E do ta l :  (V~ E v)[[q]~ \[p]~ C_ B(X~, a, f (a) ) ]}  

is uncountable, and 

( v , f  [ Y(v, f ,q ,p))  E ~q. 

The notion of forcing we have described (seemingly) need not be proper. If, 

however, we put restrictions on the family X we get a proper notion of forcing. 

We will need some notation to express the necessary ideas. 

Definition 3.7: Let v C ~ be finite. We define 

Xv = I I  X~, 
,~ E,t, 

and we let 7/v be the filter of closed subsets of .\% that is generated by sets of 

the form 1-I~ev A~, where A¢E 7/4. 

Note that 7/v will be countably complete and generated by _< R1 sets because 

each H f is. 

Definition 3.8: Let v C n be finite, and let f be a promise. A point (x~: ~ E v) 

E X~, is banned by (v, f )  if 

{(~ E d o m f :  (V~ E v)[x~ E I3(X~,a,f((~))]} 

is countable. We let Ban(v, f )  be the collection of all points in X~ that are 

banned by (v, f ) .  We may abuse notation and write things like Ban({X}, f )  in 

the sequel - -  all such expressions have the obvious meanings. 

Definition 3.9: Let v C_ t~ be finite. We say v is d a n g e r o u s  if there is a promise 

f such that Ban(v, f )  is ?-/v-large. X is safe if no finite v C_ ~ is dangerous. 

Our definition of "safe" was formulated so that the proof of the following 

theorem goes through the proof of Claim 3.13 is the place where we really 

need it. 

THEOREM 3: I f X  : {X~: ~ ( t~} is safe, then P(X) is totally proper. 

Before we commence with the proof of this theorem, we need a definition and 

lemma. 
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Definition 3.10: Let v C_ n be finite, p • P(X) ,  and let D C P(X)  be dense. An 

ordinal 7 < Wl is said to be bad  for (v ,p ,D)  if there is an n such that there is 

no q _< p in D such that for all ( E v, 

c 7, 

We let Bad(v, p, D) be the collection of all 7 < 0Jl that are bad for (v, p, D). 

So y ¢ Bad(v ,p ,D)  means for every n, we can find a q _< p in D such that 

[q]~ "-.[p]~ C_ B(X~,% n) for all ~ • v. 

LEMMA 3.11: Bad(v ,p ,D)  is countable. 

Proof." Suppose not. The flmction f with domain Bad(v,p, D) that sends "y 

to the n that witnesses 7 • Bad(v ,p ,D)  is a promise. Now we define r = 

(%, (I)p U {(v, f )}) .  Clearly r _< p in P ( X ) ,  and since O is dense there is a q _< r 

in D. Now Y(v, f , q , r )  is uncountable, and for "~ • Y(v ,  f ,  q,r) and ~ • v we 

have 

[q]~ \[p](  = [q]~ \[r]~ c_ B ( X ( , % f ( 7 ) )  

and this contradicts the definition of f .  I 

LEMMA 3.12: Let (v, f )  be a promise, and suppose (x(: ~ • v) is not in Ban(v, f ) .  

Then there is (U~: ~ • v) such that U~ is a neighborhood of x~ C X~ and 

{a E dora f:  (V( • v)[U~ C B(X~, c~, f(c~))]} 

is ~mcountable. In particular, Ban(v, f )  is a closed subset of X~,. 

Proof: Let {1/~,: n E w} be a neighborhood base for (x~: ~ E v) in the (first 

countable) space X,,, and define 

A = {a e dora f:  (V~ • v)[x~ • B(X~,a,  f(ct))]}. 

By assumption, A is uncountable, and for each a • A there is an n for which 

c_ I-[ 
(Ev 

Thus there is a single n for which 

{a E A: I~, C_ H B(X¢, a, f(a))} 
~Ev 
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is uncountable.  The  definition of the product  topology then gives us the U~'s 

tha t  we need. I 

Proof of Theorem 3: Let N -< H(A) be countable  with P ( X )  • N. Let p • 

N M P ( X )  be arbi t rary,  and let {Dn: n • w} list the dense open subsets of P ( X )  
t ha t  are member s  of N.  Let 5 = N M wl, and let {%:  n < w} enumera te  N A ,¢. 

Since all the spaces in ,1' are countably  compac t  and N is countable,  there is 

a sequence {(in: n • w} increasing and cofinal in (f such tha t  for every ~ • N M ~, 

the sequence {(in: n • w} converges in X~ to a point  z~. 

CLAIM 3.13: I f  V = { ~ 0 , . . . , ~ n - 1 }  C N M ~ and f • N is a promise, then 

(Z~o,... , z~,_~) is not  banned by (v, f ) .  

Proof: Since X is safe and (v, f )  E N,  there are sets Ai E 7t~ MN for i < n such 

tha t  Ao × . . .  × An-1 is disjoint to Ban(v,  f ) .  Since Ai A~31 is co-countable,  for all 

sufficiently large e we have 6e C Ai. Since this holds for each i, for all sufficiently 

large/~ the n- tuple  ((ie . . . .  ,5e) is in A0 × • .. × An-1. Since this la t ter  set is closed, 

we have tha t  (Z~o, . . . ,  z ~ _  1) is in Ao × . . .  × A n - l ,  hence (z~o, . . . ,  z~n_ 1) is not 

banned  by (v, f ) .  I 

Let {V(z~, n): n E w} be a decreasing neighborhood base for z~ in X~, with 

clx¢ V(z~, 0) ~ 7/~; this uses the fact tha t  each X¢ is regular.  

We define Pn E P ( X ) ,  Un C_ t;, and a function g: w -+ Wl such tha t  

(1) P0 = P, Uo = 0, g(0) = 0, 

(2) Pn+l <-- Pn, 
(3) P~+I E N M D~, 

(4) u~ is finite, 

(5) un+l 
(6) g(n + 1) > g(n), 
(7) m < c 

(8) for "y • un+, ,  [Pn+I]~ \[Pn]~ C_ V ( z ~ , g ( n +  1)), 

(9) if (v, f )  appears  in (I)pk for some k, then there is an n _ k for which v C_ Un+l 

and 

e e + 1)) c_ 

is uncountable.  

Assume tha t  a suitable bookkeeping procedure has been set up so tha t  at  each 

stage n + 1 we are handed a (v, f )  in ~pk for some earlier k for the purposes of 

ensuring condit ion 9, and in such a way tha t  every such (v, f )  so appears .  
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There is nothing to be done at stage 0. At stage n + 1 we will be handed p~, 

u , ,  and g [ n + 1, and our bookkeeping hands us a (v, f )  • gPpk for some k < n. 

Choose U~+l C_ N N h: finite with u ,  U v U {'y,} C_ u ,+ l .  Clearly u~+l satisfies 

4, 5, and 7. 

Let f '  be the promise f [ Y(v,f,p,,pk). Clearly f '  is in N. By Claim 3.13, 

we know that (z~: ~ • u,,+l) is not banned by (u~,+l, f ' ) .  Thus by an application 

of Lemlna 3.12 we can choose a value for g(n + 1) > g(n) large enough so that 

{a • dom f ' :  (V~ • 'lln+l)[V(z~,g(,l-~ 1)) _C B(X~, a, f (a) ) ]}  

is uncountable. Now we choose ( < co large enough so that 5e ~{ Bad(Un+l, Pn, D~) 
and 

(V~ • 'ttnW1)[6g • V(:~, h(n -[- 1))]. 

Next choose m large enough so that 

(V~ • ~tn+l)[U(X~, ~f, m) C V(2,~, h(?l -I-- 1))]. 

Since B • N, we can apply the definition of 5e ¢ Bad(Un+l,p.,D.) to get 

P,~+I < Pn in N A D~ such that 

(V~ • u~+l)[[p,~+l]~ \[p,~]~ C_ B(X~, 5e,.ra) C_ V(z~,h(n+ 1))]. 

Now why does the sequence {Pn: n • w} have a lower bound? 

Define aq = Uncw ap~ Note that aq is a function satisfying requirements 1 3 

of Definition 3.6, a n d  [aq]( @ 0 only if ( • N N ~. If ~ • N M ~, then ~ -- 3'm for 

some m • w, and our construction guarantees that 

[aq]  c [pm]  u 0) 

and so clx~ [aq]~ ¢ H~. 

Now suppose (v, f )  • ¢~pk for some k • w. Define 

If(v,  f,  k ) =  {a • dora / :  (V( • v)[[Xq]¢ \[Pk]¢ C_ B(X¢, a, f (a))]} .  

CLAIM 3.14: K(v, f, k) is uncountable. 

Proof: Let n _> k be as in condition 9 for (v, f ) ,  so 

A: = {a • }'(v, f, Pn,Pk): (V~ • v)[V(z~, h(n + 1)) C_ B(X~, a, f (a) ) ]}  



206 T. EISWORTH, P. NYIKOS AND S. SHELAH Isr. J. Math. 

is uncountable.  For a E A and { E v, we have 

[aq]~ \[Pk]~ -~- U [Pm]~ \[Prz],~ U ~n]~ \[Pk]~ 
m>n 

c_ U [p,d  "-b,& u 
m>n 

C_ V(z~, h(n + 1)) U B(X{, o~, S(e) )  

C_ B(X~, o~, f (~ ) )  

Thus  A C_ I f (v ,  f ,  k). I 

So if we define 

I~q = U I~Pn U U {(V, S [ K(v, f, n)): (v, ]) E '~'>, } 
n e w  n e w  

we have q = (aq, q~q) is a lower bound for {Pn: n E w}. I 

(as A C_ Y(v ,S ,  Pn,pk)) 

(by 8 of our construct ion) 

(as a E A). 

PROPOSITION 3.15: A singleton is safe, so if  X = {X} then P ( X )  is totally 

proper. 

Proob Suppose ({X},  f )  form a counterexample.  Then  Ban({X} ,  f )  is a ~ x -  

large subset  of X.  Since X has no uncountable  free sequences, there is a countable  

A = {xn: n E w} C_ Ban({X} ,  f )  such tha t  clx A E ~ x  and hence 

B: = d o m f N c l x A  

is uncountable.  If  a E B, then there is an n E co with Xn E B ( X , a , S ( a ) ) .  

Thus  there is a single n for which the set of a E B with x ,  E B(X,  &, f ( a ) )  is 

uncountable,  and this contradicts  the fact tha t  X n E Ban(v,  f ) .  I 

Since the union of an increasing chain of safe collections is itself safe, we know 

tha t  max imal  safe collections of relevant spaces exist. 

PROPOSITION 3.16: Assume 2t" = {X~: ~ < ~} is safe, u C_ ~ is finite, and 

p E POLO. There is a set A E itl~ such that for any (me: { E u) E A, there is a 

q <_ p such tha t  x~ E [q]~ for all ~ E u. 

Proof'. For each { E u we define a set A{ E 7-/~ as follows: 

Let {(vn, fn):  n E w} list all members  of ~hp with { E t,n (the assumpt ion  t ha t  

this set is infinite is purely for nota t ional  convenience). For each n E w there is 

a set 

CEv,, 
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that is disjoint to Ban(v,~, fn). Note that this means that for every w C_ vn and 

(x¢: ( E w) C rIcew B~, the set 

{a • domfn:  (V( • w)[x( • B(X(,a, f(oe))]}  

is uncountable. 

We let A¢ = One~o B~, and we check that A = 1-Ice~ A¢ is as required. 

So suppose a'¢ • A{ for ~ • u, and define 

aq = ap U {(~,x~, 1): e • u}. 

We want to show that for ('v, f )  • ¢5p the set. 

K(v,  f ,p)  = {a • dora f :  (V~ • v)[[aq]~ \[p]~ C_ B(X~, a, f(~))]} 

is uncountable. Note that this reduces to showing 

{ct • d o m / :  (V{ • u n  v)[x~ • 13(X~,a,f(a))]} 

is uncountable, and this follows easily from the fact that the set in (3) is un- 

countable. 

Thus if we define 

dgq = ~pU { ( v , f  I IC(v,f,p)): ( v , f )  • rbp}, 

then q = (aq, g2q) is the desired extension of p. | 

COROLLARY 3.17: I f v  C_ ~; is finite, Z C X,, is 7-l,,-large, and p • P(X) ,  then 

there is a q <_ p and (x~: ~ • v) • Z such that x~ • [q]~ for all ~ • v. 

THEOREM 4: Suppose X is a maximal safe family, and let X be an arbitrary 

relevant space. If G C_ P(X)  is generic, then 

V[G] ~ "X has an uncountable free sequence". 

Proof." 

CASE 1 : X EFt' 

In this case X = X~ for some ~ < ~. The filter ?-Q generates a countably 

complete filter of closed subsets of X~ in the extension; we will abuse notation a 

little bit and call this filter ~ as well. Note that a set is ~ - l a r g e  in V[G] if and 

only if it meets every set in H~ n V. 
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Now let A = [.Jpec[P]~" Clearly A is a subset of X~ in the extension, and since 

G is countably closed, if we are given a countable A0 c_ A there is a p E G with 

A0 C_ [p]~. The closure of ~o]~ is the same whether computed in V or V[G], and 

in V we know that it misses some set in 7-/~. This tells us that the closure of any 

countable subset of A is disjoint to a set in 7-/~ in V[G]. 
Now given a set Z E 7-/~, we can apply Corollary 3.17 with v = {~) to conclude 

that A M Z is non-empty. Thus in V[G] the set A is 7-/~-large. By Proposition 

3.2, X~ has an uncountable free sequence. 

CASE 2: X ~ X 

In this case, by the maximality of .t5 there is a finite v c_ ~ such that  

{X~: ~ E v} U {X} is dangerous. To save ourselves from notational headaches, 

we assume that v = n, and we will refer to X as Xn. We will also let w stand 

for n + 1 so the notation 7-/~ and X~ will have the obvious meaning. 

Let f be a promise witnessing that {Xi: i < n} is dangerous. In V[G], for 

i < n we let Ai = U~a[r]i be the subset of Xi obtained from the generic filter. 

By a density argument, there is a p E G such that (v, f )  E ~p. Thus if q < p 

in P(X)  the set 

Y(v, y, q,p) = {(~ E domf :  (Vi < n)[[q]i \[p]i  C B(Xi, (~, f (a) ) ]}  

is uncountable. 

CLAIM 3.18: In V[G], if A~ is a countable subset of Ai \[p]i for each i < n, then 

{a E d o m f :  (Yi < n)[A'i C_ B(X~,a, f(c0)]} 

is uncountable. 

Proof: Since G is countably closed, there is a q <_ p in G such that A~ C_ [q]i \ [P]i 

for all i < n. Now we apply the fact that Y(v , f ,q ,p )  is uncountable. | 

Now back in V, our assumption is that Ban(w, f )  is 7/~o-large. Since 7-/w is 

Rvcomplete and generated by R1 sets, we can choose 

Z: = {(x~: i e w): ~ < w,} C Ban(w, f )  

diagonalizing 7-/w. By passing to a subsequence, we may assume that 

~0 ~ ~1 ~ X i ~ X i 

for all i _< n. Note also that 

• {(x~: i < n): ~ < wl} diagonalizes ?-/v, 

• {x~: ~ < wl) diagonalizes 7-/x. 
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CLAIM 3.19: In V[G], I = {~ < wl: (Vi < n)x({ E Ai} is ,mcountable. 

Proof: This will follow by an easy density argument in V. Given ~0 < wl, the 

set {(x~: i < n): ~ _> ~0} still diagonalizes 7-/,, so in particular it is 1i~-large. 

Now Corollary 3.17 tells us that  the set of conditions forcing the existence of a 

> ~0 such that  (Vi < n)[x~ E [q]/] is dense in P(X),  hence G contains such a 

condition. | 

Since I is uncountable, in V[G] the set {x~: ~ E I} will diagonalize 1ix.  

CLAIM 3.20: In V[G], ifIo C_ I is countable, then clx{X~n : ~ E I0} is disjoint to 
a set in 1ix. 

Proof:'. Suppose this fails, so there is a countable Io C_ I witnessing it. Note that  

{x~: ~ E Io} E V as P(X) is totally proper, and also that  the closure of this set 

is the same whether computed in V or V[G]. In particular, by the maximali ty of 

1ix in V, all but countably many a < ~M l are in clx{x~: ~ E Io}. For i < n, we 

define 

= c Io},  

and by Claim 3.18, the set 

B = {a E dora f :  (Vi < n)[A' i C_ B(Xi,a, f (a))]}  

is uncountable. By throwing away a countable subset of B, we can assume that  

for all a E B, there is a ~ ~ I0 such that  :r,~ E B(Xn,o~,f(a)). Thus there is a 

single ~ E I0 for which 

e B: e B(X , 

is uncountable. Now this contradicts the fact that  (x~: i < n) is in Ban(w, f )  
| 

We have shown that  in V[G], there is a set that  diagonalizes 1ix with the 

property that  the closure of every countable subset is disjoint to a set in 1ix.  

Now Proposition 3.2 tells is that  X has an uncountable free sequence. | 

THEOREM 5: If X is a safe collection of relevant spaces, then P(X) satisfies the 

lq2-p.i.c. 

Proof: Let i, j ,  Ni, Nj, h, and p be as in Definition 1.3. Just as in the previous 

section, if r E N~ ~ P(X),  we define 

r U h(r): = (at U h(ar), Or U h(~br)). 



210 T. EISWORTH, P. NYIKOS AND S. SHELAH Isr. J. Math. 

LEMMA 3.21: Assume that r • Ni n P(2(). 

(1) u E P(X), 
(2) r U h(r) extends both r and h(r), 

(3) f f  s E Ni N P ( X )  and r <_ s, then r Uh(r)  < sU h(s). 

Proof  The proof is essentially the same as the one for Lemma 2.7. | 

Just as in the proof of Theorem 1, it suffices to produce an (Ni, P(X))-generic 

sequence {p~: n • w} (with P0 = P) such that {Pn U h(p,~): n E w} has a lower 

bound. 

Let {D~: n • ~} list the dense open subsets of P(2() that are members of 

Ni. Let 5 =  NiNlqa = N jN lq l ,  and let {Tn: n < w} enumerate NiN,~.  Also 

fix a sequence {hn: n • w} strictly increasing and cofinal in 5 such that for each 

E (Ni U Nj)  N ~, the sequence {5~: n • w} converges in X~ to a point z~. 

CLAIM 3.22: I f  v C Ni N ~ is finite and f C N~ is a promise, then (z~: ~ • v) is 

not banned by (v, f ) .  The same holds with Ni replaced by Nj.  

For ~ E (Ni U Nj)  N g, let {V(z~, n): n • w} be a decreasing neighborhood base 

for z~ in X~, with elxe V(z~, 0) ~ 7Q. We will define Pn, qn, u,~, and g E ~w such 

that  

(1) p0 = p, q0 = p0 U h(po), uo = 0, g(O) = O, 

(2) Pn+l ~-- Pn, 
(3) P~+I • Ni N Dn, 
(4) qn = pn u 
(5) u,~ C_ Ni N ,~ is finite, 

(6) u~+l D Un, 

(7) {'~m: TYt < 7/} C 'ttn, 

(s) 9 ( -  + 1) > 
(9) for 7 • Un+l U h(Un+l) ,  [qn+l]'r \[qn]~r C_ V(z .r ,g(n + 1)), 

(10) if (v, f )  • ePqk for some k, then there is a stage n _> k for which 

v c_ u~+l U h(un+t) 

and 

{a E Y ( v , f ,  qn,qk): (V~ E v)[V(z~,g(n+ 1)) C B(X~,a,  f ( a ) ) }  

is uncountable. 

Fix a bookkeeping procedure as in the proof of Theorem 1. At stage n + 1 we 

will be handed Pn, qn, un, g r n + 1, and (v, f )  E ~qk for some k _< n. 
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Choose U.+l c_ Ni r3 n finite with u.. U {7~} C_ u .  and v C_ u .+ l  U h(un+x). To 

define g(n + 1), we need to split into cases depending on whether (v, f )  comes 

from Pk or h(pk). 

CASE 1: (v,f)  • Ni 
Note that Y(v, f ,  qn,qk) = Y(v , f ,  pn,ph~), so f '  = f I Y(v , f ,  pn,pk) is a 

promise in Ni. We know (z~: ~ • v) is not banned by (v, f ' ) ,  hence there is a 

value g(n + 1) > g(n) large enough such that 

{a • dom f ' :  (Y~ • 'v)[V(z~, g(n + 1)) C_ I3(X~, a, f(c0)]} 

is uncountable. 

CAsE 2: (v, f )  • Nj \ N~ 
This case is analogous we use the fact that 

Y(v, f, an, qk) = Y(v, f, h(pn), h(pk)) • Nj. 

In either case, we have ensured that condition (10) of our construction is 

satisfied for (v, f ) .  

Now choose g < w large enough so that 

and 

5e ¢ Bad(un+l,pn, Dn) 

(V~ E '~tn+l U h('~tn+l))[(~ ~ • V(z~,g(Tt q- 1))]. 

Choose m large enough so that 

(Vu~+l u h('u..+l))[B(X~, 5e, m) C_ V(:~. g(n + 1))]. 

In N~, apply the definition of 6e ~ Bad(un+l, P. ,  D . )  to get Pn+l _< Pn in Ni A D .  
such that 

(v~ • u~+~)([p.+~]~ \[pd~ c B(x~,5~,m)). 

Applying the isomorphism h tells us that 

(V~ e h(Un+l))([h(pn+l)]~ \[h(pn)]~ C_ 13(X~,~e,.rn)). 

The choice of m, together with (3) and (4), tells us 

(V~ • U,+l U h(un+l))([qn+l]( "[qn]~ C_ V(z~,g(n + 1))). 

Thus we have achieved everything required of us at stage n + 1. The verification 

that {q,: n • u;} has a lower bound proceeds just as in the proof of Theorem 3. 
| 
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Conclusion 2: Assume CH holds. There is a totally proper notion of forcing 

P (X) ,  satisfying the R2-p.i.c., such that  every relevant space in the ground model 

acquires an uncountable free sequence in the generic extension. 

4. T h e  i t erat ion  

We now construct a model of ZFC in which 2 ~° < 2 al and there are no locally 

compact first countable S-spaces. Starting with a ground model V satisfying 

2 ~° -- lql and 2 sl = ~17, we will do a countable support  iteration of length w2. 

More specifically, let P = (Pa, Q~: c~ < w2) be a countable support iteration 

defined by 

• P0 is the trivial poset, 

• if c~ = /7  + 1, then V P" ~ ( ~  is Laver forcing, 

• if c~ is a limit ordinal, then Y P" ~ (~a =/~(l[) • /~(X) ,  where 

V p" ~ ~ is the collection of all P-ideals in [aJ1] s°, 

and 

V P~*p(u) ~ X is a maximal safe family of relevant spaces. 

We don' t  actually use much about Laver forcing; the relevant facts we need 

are that  it is proper, assuming CH it satisfies the R2-p.i.c. (Lemma VIII.2.5 of 

[11]), and it adds a real r E ~w that  eventually majorizes every real in the ground 

model. 

The point of using the partial  orders from sections 2 and 3 is that  they can 

handle all "candidates" from a given ground model, instead of just one at a time. 

This means that  in ~2 stages we can catch our tail, even though there are R17 

"candidates" to worry about at each stage of the iteration. 

Having defined our iteration, we arrive at the main theorem of this paper. 

THEOREM 6: In the model V[G~2], there are no locally compact first countable 

S-spaces, and 2 ~° < 2 ~1 . More generally, every locally compact first countable 

space of countable spread is hereditarily Lindel6f. 

The rest of this section will comprise the proof of this theorem. Standard facts 

about R2-p.i.c. iterations make it easy to show by induction on a < a~2 that  the 

following hold: 

P~ has the R2-p.i.c., 

v CH, 
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and 

V P~ ~ O,a has the R2-p.i.c. 

Statement (4) is conclusion 1 of Lemma VIII.2.4 of [11], while statement (4) 

follows from statement (4) using Claim VIII.2.9 of [11]. Statement (4) follows 

from our previous work, although we should point out that we need (4) in order 

for this work to apply. 

Conclusion 2 of Lemma VIII.2.4 of [11] together with (4) imply 

P~: satisfies the R2-chain condition. 

We should point out that (4) does not claim that P~2 satisfies the R2-p.i.c. 

the R2-p.i.c. is only preserved for iterations of length < a~2. 

Note that (4) together with the fact that we are adding many Laver reals in 

the iteration implies 

V P~2 ~ b = 2  ~° =R2 and 2 s~ =R17. 

Thus the cardinal arithmetic in vP~2 is as advertised, and we need only verify 

that every locally compact 1st countable space of countable spread is hereditarily 

Lindelhf in V[G~2 ]. We first reduce our task by showing that it suffices to consider 

only X with a certain form. 

CLAIM 4.1: If  Z is a locally compact space of countable spread which is not 

hereditarily Lindel6f, then there are X,  Y, and {U~: a < ah} such that 

• X is a locally compact non-Lindel6f subspace of Z, 

• Y C_ X is right soparatod in type ~1, witnessed by open sets {Ua: a < COl}, 

• X = elY, 

• the LindelSfdegree of X is exactly Rl, i.e., ~(X) = R1. 

Proof'. By a basic lemma [10], Z has a right-separated subspace Y of cardinality 

R1, {y~: a < ~01}, and any such subspace is hereditarily separable because Z is 

of countable spread. For each ya pick an open neighborhood Wa whose closure 

is compact and misses all the later yz. Every locally compact space is Tychonoff, 

so for each a there is a cozero-set neighborhood V~ of y~ inside W~. Let V = 

U{V~: a E c01}. Then V is locally compact, and it is not Lindelhf because each V~ 

contains only countably many ya. In fact, f(V) -- R1 because we carefully took 

the union of the V~ instead of the union of the W~, and each V~ is sigma-compact. 

Now it is clear that X = ely Y is as desired. | 
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We work now in the model V[G~2] and assume for purposes of contradiction 

that  Z is a locally compact first countable space of countable spread which is 

not Lindelhf. Let X and Y be as in the previous claim. For each y~ E Y, 

we choose a neighborhood V~ such that  cl V~ is a compact subset of U~. Let 

A~ = V~ n Y E [wl] ~°. 

CLAIM 4.2: X satis/~es Property D, i.e., every countable closed discrete subset 
of X expands to a discrete collection of open sets. 

Proof: This follows from the general result that  every 1st countable regular 

space X satisfying e(X) < b satisfies Property D. The proof of this is only a 

minor modification of the proof of [15, 12.2] which was for IX I < b because van 

Douwen could not find any use for the added generality given by e(X) < b. 

However, for the sake of self-containment we give the proof of this result here. 

Let g(X) < b and let D = {Xn: n E w} be a countable closed discrete subspace 

of X.  Using regularity, let {Un: n E w} be a family of disjoint open sets such that  

x~ E U,~ if and only if xn = xm. For each n let {Bn: i E w} be a decreasing local 

base at xn such that  B~ C Un. Let U = U{Un: n E w} and for each y ¢ X \ U 

let Vy be an open neighborhood of y whose closure misses D, and let fy: w --~ w 
be such that  BnS~(~) has closure missing Vy for all n. Since X \ U has Lindelhf 

degree < b, we can find {ya: c~ < ~}, (~ < b) such that  {Vy : c~ < n} covers 

X \ U. Using the definition of b, let f :  w --~ w be such that  fy~ <* f for all c~. 

In other words, there exists k E w such that  fy~ (n) < f(n) for all n > k. We 

then have all of X \ U covered by open sets each of which meets at most finitely 

many of the sets B n which is thus a locally finite collection of disjoint open f (n) '  
sets. Hence it is a discrete open expansion of D, as desired. I 

Our assumptions on X imply that  IXI < w2 - -  every point in X is the limit 

of a sequence from Y. We will assume that  in fact IXI = R2 (this is the difficult 

case) and that  the underlying set of X is w2, with Y = wl _C X. 

Since X is first countable, we have that  w(X) <_ ~2, so le t /3  = {W~: ~ < w2} 

be a base for X. For technical reasons, we assume W( = U~ for ~ < wl (here 

U~ is as in Claim 4.1) with repetitions allowed in the case w(X) = R1. Let /~  be 

a P~2-name for B, and let N be an elementary submodel of V[G~2]'s version of 

H(A) satisfying 

• INI-- ~1, 
• X,  P,/3, ~, {U~: ~ < Wl}, {V~: ~ < wl}, and G,~ are in N,  

• N n w 2 = a f o r s o m e a < w 2 .  

(The set of such N is closed and unbounded in [H(A)] ~ . )  
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For an ordinal /3  < w2, define Bg: = {W~ N/3: ~ </3}. 

CLAIM 4.3: With (x as above, 

(1) /3~ is a base for the topology on a as a subspace of X ,  

(2) u~ e v[c.]. 

Proof: ( l )  Suppose /3  < a and U C_ X is a neighborhood of/3. Since X is first 

countable  and /3 C N,  there is a neighborhood U ~ of /3  such tha t  U ~ E N and 

U'  C_ U. Now 

N ~ (37 < ~)[/3 c W7 A W~ c U']. 

Thus  there is such a '7 < a and we are done. 

(2) For each pa i r /~  = (/3o,/31) E a ,  there is a condit ion p/~ E G~ 2 tha t  decides 

whether  or not/31 E W/3o, hence there is such a condit ion in N.  Now the suppor t  

of p/~ is a countable  subset  of w2 tha t  is in N,  hence there is a '7 < e with the 

suppor t  of p/~ a subset  of 7. This means  to decide whether  or not/31 is in WZo, 

we need on ly /~  and G ~  [ P7 = GT. T h u s / 3 a  can be recovered f rom/3  and the 

sequence (GT: '7 < a) ,  bo th  of which are in V[G~]. ] 

Now let 92 = (N~: ~ < w2) be a continuous, increasing G c h a i n  of e lementary  

submodels  of H(A) such that. 

• each N~ is as in the previous discussion, 

• (N¢:~ < s  ¢) E N¢+I, 
• [~]~o c U~<~ N~. 

Now we define a function F:  w2 -+ w2 by lett ing F(~)  equal the least ~ such 

tha t  

and 

V[G,I] N [~]~o C_ N¢ 

N~ n [q.o c v[c¢]. 

Note tha t  since bo th  V[G~] N [~]¢o and N~ n [~]~o have cardinal i ty at  most  ~1, 

the function F is defined for all ~ < w2. 

CLAIM 4.4: Suppose "7 < w2 has cofinality R1 and is closed under the function 

F.  Then N~ n [7] ~° = V [ C q  n [7] ~°. 

Proof: Suppose first t ha t  A C [7] ~° N V[GT]. Then  there is a /3 such t ha t  

sup A < / 3  < 7 and A c V[Gt+ ]. Now F(/3) < 7 and A C Ns(~)N[/3] ~° C_ NTN[7] ~o. 

Conversely, suppose A E [7] ~° N Nv. Since sup A < "7 and '7 is a limit ordinal,  

there is a /3 > s u p A  below 3 + with A E N~+. Then  A 6 V[GF(~)]N[/3]~° c_ 

V[G.~] n [7] ~o. . 
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Let s0 < 032 be large enough that {A¢: ~ < 031} E V[Go0] (the A¢'s were 

defined right before Claim 4.2), and let s < 032 satisfy 

(1) s > a0, 

(2) cf(s)  ---- R1, 

(3) No  n 032 = s ,  

(4) No N [s] ~° = V[Go] M [s] ¢°. 

Such an s can be found by using the preceding claim, as the set of ordinals 

satisfying (3) is closed unbounded in 032. 

CLAIM 4.5: V[Go] ~ Z: = {B E [031]~°: [A¢ M B] < R0 for all ~ < o31} is a 

P-ideal. 

Proo~ Clearly 27 is an ideal (and in V[Ga]). Let {Sn: n E w} C_ Z be given; 

without loss of generality the B,,'s are pairwise disjoint. Let hn: w --+ wl be an 

enumeration of Bn. 

Since cf(a) = R1, there is a/3 in the interval (a0, a) such that {hn: n E w} E 
V[Gz]. For each ( < wl, define a function f(  E ww by 

f~(n) = 1 + max{m: hn(m) E A~}. 

Since ao </3, each f~ is in V[G~]. Now in V[Go] there is an r E ~'03 dominating 

{f~: ~ < 031} - -  r can be taken to be the Laver real added at stage/3 + 2 < a. 

Now let 

B: ~ U Bn \{hn(m):  m ~ r ( n ) } .  
new 

Clearly B E Z and B~ C_* B for all n E 03. I 

Now let Xo be the topological space with underlying set s and base given by 

t~o. 

Claim 4.3 tells us that Xo E V[Go], and that in V[Gw=], Xa is a subspace of 

X. We will use this implicitly throughout the remainder of the section. 

CLAIM 4.6: 

(1) IrA E V[Go] M [Xa] ~° has a limit point in X, then A has a limit point in 

(2) V[Go] ~ Xa has Property D. 

Proo£" (1) Suppose A E V[Go] A [Xo] ao has a limit point in X. Our choice of 

a and Claim 4.4 together imply that A E No, and hence there is a limit point of 

A in No. This gives us the required limit point for A in Xo. 
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(2) Suppose D = {x,~: n E co} is a closed discrete subset of X~ in V[G,~]. By 

the first part  of the Claim, D is a closed discrete subset of X, and by Claim 4.4 

we know that  D E No. Since X satisfies Property D, D expands to a discrete 

collection of open sets, without loss of generality members of our fixed base B. 

Since D C No, there is such an expansion in No. Now the countable subset of co2 

that  indexes this cover is in N~ n [a] ~o, hence it is in V[Go] as well. This gives 

us the required discrete fanfily of open sets in V[Go]. | 

Our goal is to show that  in V[G~+I], Xo acquires an uncountable discrete 

subset. Since Xo is a subspace of X in V[G~o~], if we attain our goal we will have 

a contradiction, proving that  such a space X does not exist in V[G~2]. 

We work for a bit in V[G,~]. The first thing we do is force with P([ ) ,  where 

lists all the P-ideals in V[Go]. If H0 is a generic subset of P(II), then in V[Go][Ho], 
either there is an uncountable B C_ C~l with [B] ~° C_ Z, or there is an uncountable 

B C_ COl with [B] a0 n Z = ~. 

Let us suppose the first possibility occurs. This means that  every countable 

subset of B has finite intersection with every A~ (in V[Ga][Ho]). This continues 

to hold in V[G~] ,  so in V[G~] there is an uncountable B C_ Y that  meets each 

V~ at most finitely often, i.e., B has no limit points in Y. Thus B is a discrete 

subspace of Y c_ Xo, and we achieve our goal and reach a contradiction. 

Now suppose the second possibility occurs. This means that  in V[Go][Ho], 
there is an uncountable B such that  every countably infinite subset of B meets 

some A~ in an infinite set. 

CLAIM 4.7: V[Go][H0] ~ Z: = elx~ B is countably compact and non-compact. 

Proof'. First note that  any countable subset of Z from V[G~][Ho] is in V[G~], as 

P(1I) is totally proper. Given Bo E [B] ~°, there is a ~ < col such that  B1 = BonA¢ 
is infinite. 

Now step into the model V[G~2]. Since B1 C_ A¢ C_ V~ and elV~ is compact,  

B0 has a limit point. Since B0 is in the model V[Go], our choice of c~ implies 

that  B0 has a limit point in Xo. 

Now Xa has Property D in V[Go], and since no new countable subsets of Xo 

appear in V[Ga][Ho], Xo has Property D in this model as well. 

This means any alleged infinite closed discrete subset of clx~ B (in V[Go][Ho]) 
would expand to a discrete collection of open sets, thereby yielding an infinite 

subset of B with no linfit point in Xo. We have already argued that  this is 

impossible. Thus 

V[Ga][H0] ~ e lx ,  B is countably compact. 
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Now the open cover {X~ A Ue: ~ < +t} of X~ is in VIGil (here we use another 

assumption we made about B), and each of these sets meets B at most countably 

often, and so clx~ B is not compact. | 

If  it happens that  Z contains an uncountable discrete subset, then we are 

done, so we may assume this does not happen. In particular, we may assume 

that  Z contains no uncountable free sequence. By virtue of the preceding claim, 

this means that  Z is a relevant space (terminology from the last section) in 

V[G,~I[Ho]. 
The next thing we do in our iteration is to force with P(X), where 

V[G~I[Ho] ~ X is a maximal safe collection of relevant spaces. 

The results of the preceding section tell us that  Z acquires an uncountable 

discrete subset after we do this forcing. Thus 

V[Ga+I] ~ Xa  has an uncountable discrete subset 

and again we have achieved our goal, reaching a contradiction. Thus every first 

countable locally compact space of countable spread is hereditarily Lindelhf; in 

particular, there are no locally compact first countable S-spaces in V[G,,2] and 

Theorem 6 is established. 

Theorem 6 is reminiscent of the theorem of Szentmikldssy recounted in [10] 

that  MA(Wl) implies that  no compact space of countable tightness can contain 

an S-space or an L-space. 

Every compact space of countable spread is of countable tightness, and if a 

locally compact space is of countable spread, so is its one-point compactification. 

So our result may be looked upon as a mild version of one half of Szentmikldssy's 

theorem [12] for models of 2 a° < 2 ~1 . It  would be very nice if we could get even 

a similarly mild version of the other h a l ~ i t  would settle a famous fifty-year-old 

problem of Kat~tov [7]: 

Problem: If a compact space has hereditarily normal ("T5") square, must it be 

metrizable? 

The second author showed that  the answer is negative if there is a Q-set, so 

that  in particular MA(col) implies a negative answer. Gary Gruenhage showed 

that  CH also implies a negative answer. Proofs appeared in [5] along with a 

theorem connecting Kat~tov's problem with the theory of S and L spaces: 
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THEOREM 7: / f  there does not exist a Q-set, and X is a compact nonmetrizable 

space with Ta square, then at least one of the following is true: 

(1) X is an L-space, 

(2) X 2 is an S-space, 

(3) X 2 is of countable spread, and contains both an S-space and an L-space. 

Par ts  (2) and (3) are ruled out in our model because of Kat~tov 's  theorem tha t  

every compact  space with T5 square is perfectly normal,  hence first countable. If  

it could be shown tha t  there are no compact  L-spaces (which are automat ical ly  

first countable) in our model,  then Kat~tov 's  fifty-year-old problem would be 

flflly solved. I t  is not  out  of  the question tha t  first countable compact  L-spaces 

can be gently killed, so tha t  even if some of  these spaces exist in this model,  we 

can maybe throw in a few more notions of forcing to explicitly banish them. 

There is a tantalizing sort of duality between our model and the model  obtained 

by adding R2 random reals to a model of MA +e = R2. There, too, there are no 

Q-sets (even though 2 ~° = 2 s~); but  there, it is L-subspaces of compact  spaces 

of countable spread tha t  do not exist (see [14]), so tha t  (1) and (3) are ruled 

out there, and it is the s tatus of locally compact  first countable S-spaces tha t  is 

unknown. 

If  neither of these models works out,  it is to be hoped tha t  the techniques we 

have introduced in this paper will some day produce a model tha t  does settle 

Kat~tov 's  problem. 
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